Translation Validation via Linear Recursion Schemes Master Seminar

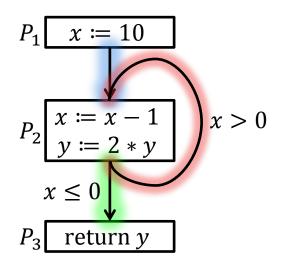
Tobias Tebbi

Translation Validation

- **Goal** Verified Compiler
- Method Implement Validator that checks if input and output of compiler pass are equivalent.
- Needs Decidable sufficient criterion for program equivalence

CPS

Control Flow Graph

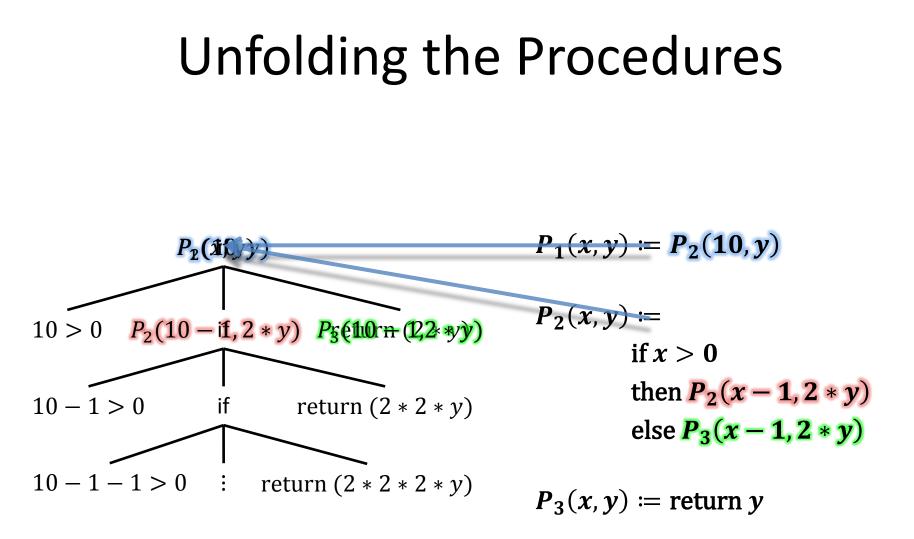


Continuation Passing Style

$$P_1(x,y) \coloneqq P_2(10,y)$$

 $P_2(x, y) \coloneqq$ if x > 0then $P_2(x - 1, 2 * y)$ else $P_3(x - 1, 2 * y)$

 $P_3(x, y) \coloneqq \operatorname{return} y$

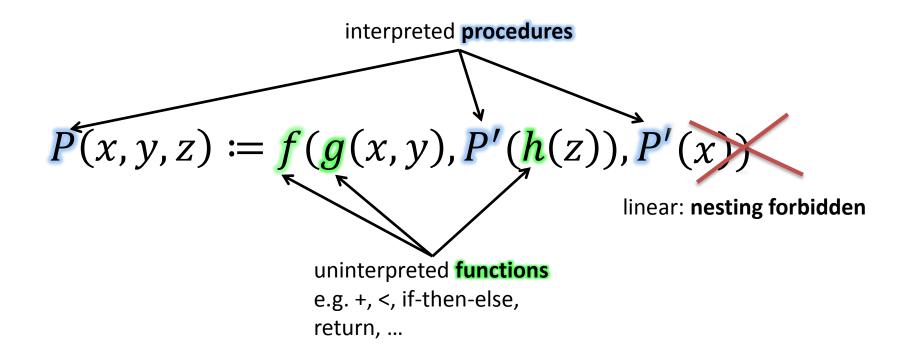


Program Equivalence

- If trees equal, then programs equivalent.
- This is decidable! [Sabelfeld2000]
- Many optimizations do not change the tree.
- It does not matter
 - which arguments/variables/registers are used.
 - when values are computed.
- But the branching structure **does** matter, e.g. which test is done first.

Linear Recursion Scheme

• Restriction with polynomial equivalence check



Simplifications for this Talk

 $s, t ::= x \mid a \mid s \cdot t$

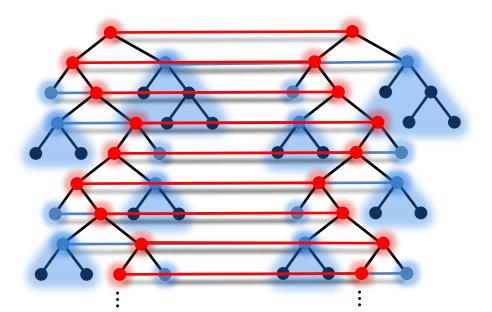
- Just one uninterpreted function/operator s \cdot t
- Simple terms
- Terms $S, T ::= s \mid P(s)$
- Only procedures of the form

 $P(x) \coloneqq P'(s) \cdot t$ $P(x) \coloneqq s \cdot P'(t)$ $P(x) \coloneqq P'(s) \cdot P''(t)$

- Thus
 - All procedures produce infinite trees
 - Only binary trees where all inner nodes are labelled with \cdot and leaves are labelled with variables or constants
 - Every subtree is described by a term P(s) or s

Equality of Infinite Trees

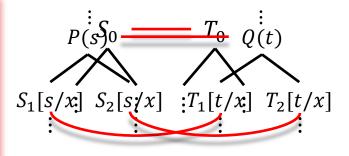
 Binary infinite trees equal ⇔ All subtrees at same position and with infinite parent-subtrees are both infinite or equal



Equality of Infinite Trees

- Binary infinite trees equal ⇔ All subtrees at same position and with infinite parent-subtrees are both infinite or equal
- To check equivalence of S_0 and T_0 , we generate all such pairs of subtrees with the inductively defined relation $Unf(S_0, T_0)$:
 - $(S_0, T_0) \in \text{Unf}(S_0, T_0)$

- If $(P(s), Q(t)) \in \text{Unf}(S_0, T_0)$ with $P(x) \coloneqq S_1 \cdot S_2$ and $Q(x) \coloneqq T_1 \cdot T_2$, then $(S_1[s/x], T_1[t/x]) \in \text{Unf}(S_0, T_0)$ and $(S_2[s/x], T_2[t/x]) \in \text{Unf}(S_0, T_0)$



- $Unf(S_0, T_0)$ is **consistent** if for all $(S, T) \in Unf(S_0, T_0)$, both *S* and *T* are procedure calls or S = T.
- $S_0 \equiv T_0$ iff Unf (S_0, T_0) is consistent.

Substitutions

- A substitution σ is a function from variables to simple terms.
- σ S is the term S where every occurrence of a variable x is replaced by σx .
- The instantiation pre-order \leq on terms: $S < T : \Leftrightarrow \exists \sigma, S = \sigma T$

And on pairs of terms:

$$\begin{split} (S_1,S_2) &\leq (T_1,T_2) \\ &: \Leftrightarrow \\ \exists \sigma. \ (S_1 = \sigma T_1 \wedge S_2 = \sigma T_2) \end{split}$$

Finite Equivale

- $(S_0, T_0) \in \text{Unf}(S_0, T_0)$ If $(P(s), Q(t)) \in \text{Unf}(S_0, T_0)$ with $P(x) \coloneqq S_1 \cdot S_2$ and $Q(x) \coloneqq T_1 \cdot T_2$, then $(S_1[s/x], T_1[t/x]) \in \text{Unf}(S_0, T_0)$ and $(S_2[s/x], T_2[t/x]) \in \text{Unf}(S_0, T_0)$
- If there is a consistent superset of $Unf(S_0, T_0)$, then $S_0 \equiv T_0$.
- We want to construct a finite representation of such a set to serve as an equivalence proof.
- Consider a finite, consistent relation *R* such that
 - $(S_0, T_0) \leq (S, T) \text{ for some } (S, T) \in R$ $- \text{ If } (P(s), Q(t)) \in R$ with $P(x) \coloneqq S_1 \cdot S_2 \text{ and } Q(x) \coloneqq T_1 \cdot T_2,$ then for $i \in \{1, 2\},$ $S_i[s/x] = T_i[t/x] \text{ is a simple term}$ or $(S_i[s/x], T_i[t/x]) \leq (S, T) \text{ for some } (S, T) \in R$

Lemma:

 $\{(S,T) \mid (S,T) \le (S',T') \text{ with } (S',T') \in R\} \cup \{(s,s) \mid s \text{ is a simple term}\}$ $\supseteq \text{Unf}(S_0,T_0)$

• The constraint on *R* is decidable. Thus we have a method to prove equivalence.

Unificat

- $(S_0, T_0) \in \text{Unf}(S_0, T_0)$ If $(P(s), Q(t)) \in \text{Unf}(S_0, T_0)$ with $P(x) \coloneqq S_1 \cdot S_2$ and $Q(x) \coloneqq T_1 \cdot T_2$, then $(S_1[s/x], T_1[t/x]) \in \text{Unf}(S_0, T_0)$ and $(S_2[s/x], T_2[t/x]) \in \text{Unf}(S_0, T_0)$
- σ is unifier of *S* and *T* if $\sigma S \equiv \sigma T$
- We write σR for $\{(\sigma S, \sigma T) | (S, T) \in R\}$ Lemma: $Unf(\sigma S, \sigma T) = \sigma Unf(S, T)$
- Thus, Unf(σS, σT) is consistent iff σUnf(S, T) is consistent iff
 - for all simple pairs $(s, t) \in \text{Unf}(S, T), \sigma s = \sigma t$
 - all other pairs consist of procedure calls only
- This is a classical first-order unification problem
- Thus we have **m**ost **g**eneral **u**nifiers (MGUs) σ : For every other unifier τ , we have $\tau = \tau \circ \sigma$

Universal Finite Equ

- $(S_0, T_0) \leq (S, T)$ for some $(S, T) \in R$ • If $(P(s), Q(t)) \in R$ with $P(x) \coloneqq S_1 \cdot S_2$ and $Q(x) \coloneqq T_1 \cdot T_2$, then for $i \in \{1, 2\}$, $S_i[s/x] = T_i[t/x]$ is a simple term or $(S_i[s/x], T_i[t/x]) \leq (S, T)$ for some $(S, T) \in R$
- Consider an MGU σ of P(x) and Q(y). Then $P(s) \equiv Q(t)$ iff $(P(s), Q(t)) \leq MGA(P, Q)$ where $MGA(P, Q) \coloneqq (\sigma P(x), \sigma Q(y))$
- Then R ≔ {MGA(P,Q) | P and Q are unifiable} is a finite equivalence proof for all equivalent terms P(s) and Q(t).
- Thus equivalence of terms is semi-decidable.

Decidability of Equivalence

- Equivalence of terms is semi-decidable.
- Non-equivalence is semi-decidable too: the trees must differ at some finite level.
- Thus equivalence is decidable.
- In the next talks, I will present an efficient procedure to decide equivalence by reducing the problem to a fragment of semi-unification.

Literature

Fokkink, W. Unification for infinite sets of equations between finite terms. *Information processing letters 62*, 4 (1997), 183–188.

Sabelfeld, V. The tree equivalence of linear recursion schemes. *Theoretical Computer Science 238*, 1–2 (2000), 1–29.