Translation Validation
Via
Linear Recursion Schemes

Master Seminar
Tobias Tebbi



Translation Validation

* Goal Verified Compiler

* Method Implement Validator that checks if
input and output of compiler pass
are equivalent.

e Needs Decidable sufficient criterion for
program equivalence



CPS

Control Flow Graph Continuation Passing Style
Al 2 =0 P1(x,y) = P3(10,y)
x=x-—1 x>0 —
P2y1=2*y Pz(x,y.)-
ifx>0
x<0

then Po(x — 1,2 x y)
else P3(x—1,2xy)

P;| returny

P3;(x,y) :=returny



Unfolding the Procedures

Py (Ai539 PrCxy-= Py(10,y)

\

1050 Py(10—if,2+y) Psctrn@2y) [ 2D=

\ ifx>0

then Po(x — 1,2 *xy)

\

\

10-1>0 if return (2 * 2 x y)
/\ elsePg(x—l,Z*y)
10-1-1>0 : return(2*2x*2x*Yy)

P3(x,y) :=returny



Program Equivalence

If trees equal, then programs equivalent.
This is decidable! [Sabelfeld2000]
Many optimizations do not change the tree.

It does not matter
— which arguments/variables/registers are used.

— when values are computed.

But the branching structure does matter, e.g.
which test is done first.



Linear Recursion Scheme
* Restriction with polynomial equivalence check

interpreted procedures

Pm P

uninterpreted functions
e.g. +, <, if-then-else,
return, ...



Simplifications for this Talk

Just one uninterpreted function/operators - t
Simple terms s,tui=x|al|s-t
Terms S,T ::=5s| P(s)
Only procedures of the form

P(x) =P'(s) -t

P(x) :=s-P'(t)

P(x) = P'(s) - P"(¢)
Thus

— All procedures produce infinite trees

— Only binary trees where all inner nodes are labelled with -
and leaves are labelled with variables or constants

— Every subtree is described by a term P(s) or s



Equality of Infinite Trees

e Binary infinite trees equal & All subtrees at same position
and with infinite parent-subtrees are both infinite or equal




Equality of Infinite Trees

Binary infinite trees equal & All subtrees at same position
and with infinite parent-subtrees are both infinite or equal

To check equivalence of Sy and Ty, we generate all such pairs
of subtrees with the inductively defined relation Unf(Sy, Ty):

-3 (SO'TO) € Unf(SOJTO)

— If (P(s),Q(¢)) € Unf(Sy, Tp) P(s§0 Ty Q(t)
with P(x) :==S5; - S, and Q(x) :=T; - T, A /Y\
then (S;[s/x], Ty [t/x]) € Unf(Sy, Ty) Suls/al Salsyx] hlt/x] To[t/x]
and (S,[s/x],T,[t/x]) € Unf(Sy, Ty) '

* Unf(Sy, Ty) is consistent if for all (S,T) € Unf(S,, Ty), both S
and T are procedurecallsor S =T.
e So =T, iff Unf(S,, Ty) is consistent.




Substitutions

e A substitution o is a function from variables to
simple terms.

e gSisthe term S where every occurrence of a
variable x is replaced by ox.

* The instantiation pre-order < on terms:
S<T :© 3do0. S=o0T
And on pairs of terms:
(51,52) < (T, Ty)
=
dg. (S1 =0T{ AS, =0oT),)



(SOJ TO) € Unf(SOJ TO)
If(P(s),Q(¢)) € Unf(Sy, Top)

Finite Equivalg = vinrw =5 s =7 =,

then (S;[s/x], T1[t/x]) € Unf(Sy, Tp)
and (S;[s/x],T,[t/x]) € Unf(S,, Ty)
* If there is a consistent superset of Unf(S,, Ty ), then Sy = T,.
* We want to construct a finite representation of such a set to serve
as an equivalence proof.

* Consider a finite, consistent relation R such that

— (8o, Ty) < (S, T) for some (S,T) € R

— 1f (P(s),Q(t)) €R

with P(x) :=8; - S, and Q(x) =T, - T,

then fori € {1,2},
Si[s/x] = T;[t/x] is a simple term
or (S;[s/x], T;[t/x]) < (S,T) forsome (S,T) €ER

Lemma:
{(S,T)|(5,T) < (S, T") with (§',T") € R} U {(s, s) | s is a simple term}
> Unf(S,, Ty)

 The constraint on R is decidable. Thus we have a method to prove
equivalence.




(SO! TO) € Unf(SO! TO)
If (P(s),Q(t)) € Unf(Sy, Tp)

Unifical withre=s sadow =17,

then (S;[s/x], T1[t/x]) € Unf(Sy, Tp)
and (S,[s/x],T,[t/x]) € Unf(S,, Ty)

e gisunifierof SandT if oS = oT
* We write oR for {(¢S,0T) | (§,T) € R}
Lemma: Unf(oS,0T) = oUnf(S,T )

* Thus, Unf(oS, oT) is consistent iff cUnf(S, T ) is
consistent iff

— for all simple pairs (s, t) € Unf(S,T), os = ot

— all other pairs consist of procedure calls only
* This is a classical first-order unification problem
* Thus we have most general unifiers (MGUs) o

For every other unifier T, we havet =to 0



* (80, Tp) < (S, T) forsome (S,T) ER
« 1f(P(s),Q(®) €R

" N1 with P(x) :=S; - S, and Q(x) =Ty - T,,
Universal Finite Eqy wmeeo-=s.
Si[s/x] = T;[t/x] is a simple term
or (S;[s/x], T;[t/x]) < (S,T) for some
(5,T) ER

* Consider an MGU o of P(x) and Q(y).
Then P(s) = Q(¢) iff (P(s), Q(t)) < MGA(P, Q)
where MGA(P, Q) := (cP(x),cQ(y))

* Then R := {MGA(P, Q) | P and Q are unifiable}
is a finite equivalence proof for all equivalent
terms P(s) and Q(t).

* Thus equivalence of terms is semi-decidable.



Decidability of Equivalence

Equivalence of terms is semi-decidable.

Non-equivalence is semi-decidable too: the
trees must differ at some finite level.

Thus equivalence is decidable.

In the next talks, | will present an efficient
procedure to decide equivalence by reducing
the problem to a fragment of semi-unification.



Literature

Fokkink, W. Unification for infinite sets of
equations between finite terms.

Information processing letters 62, 4 (1997),
183—-188.

Sabelfeld, V. The tree equivalence of linear
recursion schemes.
Theoretical Computer Science 238, 1-2
(2000), 1-29.



