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Translation Validation 

• Goal  Verified Compiler 

• Method Implement Validator that checks if 
  input and output of compiler pass 
  are equivalent. 

• Needs Decidable sufficient criterion for  
  program equivalence 



CPS 

Control Flow Graph 

 

Continuation Passing Style 

 
𝑷𝟏 𝒙, 𝒚 ≔ 𝑷𝟐 𝟏𝟎, 𝒚  

 
𝑷𝟐 𝒙, 𝒚 ≔ 

 if 𝒙 > 𝟎  

 then 𝑷𝟐 𝒙 − 𝟏, 𝟐 ∗ 𝒚  

 else 𝑷𝟑 𝒙 − 𝟏, 𝟐 ∗ 𝒚  

 
𝑷𝟑 𝒙, 𝒚 ≔ return 𝒚 

 

 

𝑥 ≔ 10 

𝑥 ≔ 𝑥 − 1 
𝑦 ≔ 2 ∗ 𝑦 

return 𝑦 

𝑥 > 0 

𝑥 ≤ 0 

𝑃1 

𝑃2 

𝑃3 



𝑃2(10, 𝑦) 

Unfolding the Procedures 

 
𝑷𝟏 𝒙, 𝒚 ≔ 𝑷𝟐 𝟏𝟎, 𝒚  

 
𝑷𝟐 𝒙, 𝒚 ≔ 

 if 𝒙 > 𝟎  

 then 𝑷𝟐 𝒙 − 𝟏, 𝟐 ∗ 𝒚  

 else 𝑷𝟑 𝒙 − 𝟏, 𝟐 ∗ 𝒚  

 
𝑷𝟑 𝒙, 𝒚 ≔ return 𝒚 

 

 

if 

10 > 0 if return (2 ∗ 𝑦) 

10 − 1 > 0 return (2 ∗ 2 ∗ 𝑦) if 

10 − 1 − 1 > 0 ⋮ return (2 ∗ 2 ∗ 2 ∗ 𝑦) 

𝑃1(𝑥, 𝑦) 

𝑃2(10 − 1, 2 ∗ 𝑦) 𝑃3(10 − 1,2 ∗ 𝑦) 



Program Equivalence 

• If trees equal, then programs equivalent. 

• This is decidable! [Sabelfeld2000] 

• Many optimizations do not change the tree. 

• It does not matter 

– which arguments/variables/registers are used. 

– when values are computed. 

• But the branching structure does matter, e.g. 
which test is done first. 

 



𝑃 𝑥, 𝑦, 𝑧 ≔ 𝑓(𝑔 𝑥, 𝑦 , 𝑃′(ℎ 𝑧 ), 𝑃′(𝑃′(𝑥))) 𝑥 )          

Linear Recursion Scheme 

• Restriction with polynomial equivalence check 

uninterpreted functions 
e.g. +, <, if-then-else, 
return, … 

interpreted procedures 

linear: nesting forbidden 



Simplifications for this Talk 

• Just one uninterpreted function/operator s ⋅ 𝑡 
• Simple terms  𝑠, 𝑡 ∷= 𝑥 | 𝑎 | 𝑠 ⋅ 𝑡 
• Terms   𝑆, 𝑇 ∷= 𝑠 | 𝑃(𝑠) 
• Only procedures of the form 

 𝑃 𝑥 ≔ 𝑃′ 𝑠 ⋅ 𝑡 
 𝑃 𝑥 ≔ 𝑠 ⋅ 𝑃′ 𝑡  
 𝑃 𝑥 ≔ 𝑃′ 𝑠 ⋅ 𝑃′′ 𝑡  

• Thus 
– All procedures produce infinite trees 
– Only binary trees where all inner nodes are labelled with ⋅ 

and leaves are labelled with variables or constants 
– Every subtree is described by a term 𝑃(𝑠) or 𝑠 

 



⋮ ⋮ 

Equality of Infinite Trees 

• Binary infinite trees equal ⇔ All subtrees at same position 
and with infinite parent-subtrees are both infinite or equal 



Equality of Infinite Trees 

• Binary infinite trees equal ⇔ All subtrees at same position 
and with infinite parent-subtrees are both infinite or equal 

• To check equivalence of 𝑆0 and 𝑇0, we generate all such pairs 
of subtrees with the inductively defined relation Unf(𝑆0, 𝑇0): 

– 𝑆0, 𝑇0 ∈ Unf(𝑆0, 𝑇0) 

– If 𝑃 𝑠 , 𝑄 𝑡 ∈ Unf(𝑆0, 𝑇0) 

 with 𝑃 𝑥 ≔ 𝑆1 ⋅ 𝑆2 and Q 𝑥 ≔ 𝑇1 ⋅ 𝑇2,  

 then 𝑆1[𝑠/𝑥], 𝑇1[𝑡/𝑥] ∈ Unf(𝑆0, 𝑇0)  
 and  𝑆2[𝑠/𝑥], 𝑇2[𝑡/𝑥] ∈ Unf(𝑆0, 𝑇0) 

• Unf(𝑆0, 𝑇0) is consistent if for all (𝑆, 𝑇) ∈ Unf(𝑆0, 𝑇0), both 𝑆 
and 𝑇 are procedure calls or 𝑆 = 𝑇. 

• 𝑆0 ≡ 𝑇0 iff Unf(𝑆0, 𝑇0) is consistent. 

𝑆0 

⋮ ⋮ 

𝑇0 

⋮ ⋮ 
⋮ ⋮ ⋮ ⋮ 

𝑃(𝑠) 

𝑆1[𝑠/𝑥] 𝑆2[𝑠/𝑥] 

𝑄(𝑡) 
⋮ ⋮ 

𝑇1[𝑡/𝑥] 𝑇2[𝑡/𝑥] 



Substitutions 

• A substitution 𝜎 is a function from variables to 
simple terms. 

• 𝜎S is the term 𝑆 where every occurrence of a 
variable 𝑥 is replaced by 𝜎𝑥. 

• The instantiation pre-order ≤ on terms: 
𝑆 ≤ 𝑇    ∶⇔     ∃𝜎.   𝑆 = 𝜎𝑇 

And on pairs of terms: 
𝑆1, 𝑆2 ≤ 𝑇1, 𝑇2   

         A ∶⇔  A 
∃𝜎.  (𝑆1 = 𝜎𝑇1 ∧ 𝑆2 = 𝜎𝑇2) 



Finite Equivalence Proofs 

• If there is a consistent superset of Unf(𝑆0, 𝑇0), then 𝑆0 ≡ 𝑇0. 
• We want to construct a finite representation of such a set to serve 

as an equivalence proof. 
• Consider a finite, consistent relation 𝑅 such that 

– 𝑆0, 𝑇0 ≤ 𝑆, 𝑇  for some 𝑆, 𝑇 ∈ 𝑅 

– If 𝑃 𝑠 , 𝑄 𝑡 ∈ 𝑅  
 with 𝑃 𝑥 ≔ 𝑆1 ⋅ 𝑆2 and Q 𝑥 ≔ 𝑇1 ⋅ 𝑇2,  
 then for 𝑖 ∈ {1,2},  
  𝑆𝑖[𝑠/𝑥] = 𝑇𝑖[𝑡/𝑥] is a simple term 
  or 𝑆𝑖[𝑠/𝑥], 𝑇𝑖[𝑡/𝑥] ≤ 𝑆, 𝑇  for some 𝑆, 𝑇 ∈ 𝑅 

Lemma: 
𝑆, 𝑇   𝑆, 𝑇 ≤ 𝑆′, 𝑇′  with 𝑆′, 𝑇′ ∈ 𝑅} ∪ { 𝑠, 𝑠  | 𝑠 is a simple term}

⊇ Unf(𝑆0, 𝑇0) 

 
• The constraint on 𝑅 is decidable. Thus we have a method to prove 

equivalence. 
 

• 𝑆0, 𝑇0 ∈ Unf(𝑆0, 𝑇0) 

• If 𝑃 𝑠 , 𝑄 𝑡 ∈ Unf(𝑆0, 𝑇0) 

with 𝑃 𝑥 ≔ 𝑆1 ⋅ 𝑆2 and Q 𝑥 ≔ 𝑇1 ⋅ 𝑇2,  

then 𝑆1[𝑠/𝑥], 𝑇1[𝑡/𝑥] ∈ Unf(𝑆0, 𝑇0)  

and  𝑆2[𝑠/𝑥], 𝑇2[𝑡/𝑥] ∈ Unf(𝑆0, 𝑇0) 



Unification 

• 𝜎 is unifier of 𝑆 and 𝑇 if 𝜎𝑆 ≡ 𝜎𝑇 

• We write 𝜎𝑅 for 𝜎𝑆, 𝜎𝑇   𝑆, 𝑇 ∈ R} 

Lemma: Unf 𝜎𝑆, 𝜎𝑇 = 𝜎Unf 𝑆, 𝑇  

• Thus, Unf 𝜎𝑆, 𝜎𝑇  is consistent iff 𝜎Unf 𝑆, 𝑇  is 
consistent iff 
– for all simple pairs 𝑠, 𝑡 ∈ Unf 𝑆, 𝑇 , 𝜎𝑠 = 𝜎𝑡 

– all other pairs consist of procedure calls only 

• This is a classical first-order unification problem 

• Thus we have most general unifiers (MGUs) 𝜎: 

 For every other unifier 𝜏, we have 𝜏 = 𝜏 ∘ 𝜎 

• 𝑆0, 𝑇0 ∈ Unf(𝑆0, 𝑇0) 

• If 𝑃 𝑠 , 𝑄 𝑡 ∈ Unf(𝑆0, 𝑇0) 

with 𝑃 𝑥 ≔ 𝑆1 ⋅ 𝑆2 and Q 𝑥 ≔ 𝑇1 ⋅ 𝑇2,  

then 𝑆1[𝑠/𝑥], 𝑇1[𝑡/𝑥] ∈ Unf(𝑆0, 𝑇0)  

and  𝑆2[𝑠/𝑥], 𝑇2[𝑡/𝑥] ∈ Unf(𝑆0, 𝑇0) 



Universal Finite Equivalence Proofs 

• Consider an MGU 𝜎 of 𝑃 𝑥  and 𝑄 𝑦 .  

Then 𝑃 𝑠 ≡ 𝑄 𝑡  iff 𝑃 𝑠 , 𝑄 𝑡 ≤ MGA 𝑃, 𝑄  

where MGA 𝑃, 𝑄 ≔ (𝜎𝑃 𝑥 , 𝜎𝑄(𝑦)) 

• Then R ≔ MGA 𝑃, 𝑄   𝑃 and 𝑄 are unifiable   
is a finite equivalence proof for all equivalent 
terms 𝑃(𝑠) and 𝑄(𝑡). 

• Thus equivalence of terms is semi-decidable. 

• 𝑆0, 𝑇0 ≤ 𝑆, 𝑇  for some 𝑆, 𝑇 ∈ 𝑅 

• If 𝑃 𝑠 , 𝑄 𝑡 ∈ 𝑅  

with 𝑃 𝑥 ≔ 𝑆1 ⋅ 𝑆2 and Q 𝑥 ≔ 𝑇1 ⋅ 𝑇2,  
then for 𝑖 ∈ {1,2},  
𝑆𝑖[𝑠/𝑥] = 𝑇𝑖[𝑡/𝑥] is a simple term 
or 𝑆𝑖[𝑠/𝑥], 𝑇𝑖[𝑡/𝑥] ≤ 𝑆, 𝑇  for some 
𝑆, 𝑇 ∈ 𝑅 



Decidability of Equivalence 

• Equivalence of terms is semi-decidable. 

• Non-equivalence is semi-decidable too: the 
trees must differ at some finite level. 

• Thus equivalence is decidable. 

• In the next talks, I will present an efficient 
procedure to decide equivalence by reducing 
the problem to a fragment of semi-unification. 
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