
Translation Validation
via

Linear Recursion Schemes

Master Seminar

Tobias Tebbi

Translation Validation

• Goal Verified Compiler

• Method Implement Validator that checks if
 input and output of compiler pass
 are equivalent.

• Needs Decidable sufficient criterion for
 program equivalence

CPS

Control Flow Graph

Continuation Passing Style

𝑷𝟏 𝒙, 𝒚 ≔ 𝑷𝟐 𝟏𝟎, 𝒚

𝑷𝟐 𝒙, 𝒚 ≔

 if 𝒙 > 𝟎

 then 𝑷𝟐 𝒙 − 𝟏, 𝟐 ∗ 𝒚

 else 𝑷𝟑 𝒙 − 𝟏, 𝟐 ∗ 𝒚

𝑷𝟑 𝒙, 𝒚 ≔ return 𝒚

𝑥 ≔ 10

𝑥 ≔ 𝑥 − 1
𝑦 ≔ 2 ∗ 𝑦

return 𝑦

𝑥 > 0

𝑥 ≤ 0

𝑃1

𝑃2

𝑃3

𝑃2(10, 𝑦)

Unfolding the Procedures

𝑷𝟏 𝒙, 𝒚 ≔ 𝑷𝟐 𝟏𝟎, 𝒚

𝑷𝟐 𝒙, 𝒚 ≔

 if 𝒙 > 𝟎

 then 𝑷𝟐 𝒙 − 𝟏, 𝟐 ∗ 𝒚

 else 𝑷𝟑 𝒙 − 𝟏, 𝟐 ∗ 𝒚

𝑷𝟑 𝒙, 𝒚 ≔ return 𝒚

if

10 > 0 if return (2 ∗ 𝑦)

10 − 1 > 0 return (2 ∗ 2 ∗ 𝑦) if

10 − 1 − 1 > 0 ⋮ return (2 ∗ 2 ∗ 2 ∗ 𝑦)

𝑃1(𝑥, 𝑦)

𝑃2(10 − 1, 2 ∗ 𝑦) 𝑃3(10 − 1,2 ∗ 𝑦)

Program Equivalence

• If trees equal, then programs equivalent.

• This is decidable! [Sabelfeld2000]

• Many optimizations do not change the tree.

• It does not matter

– which arguments/variables/registers are used.

– when values are computed.

• But the branching structure does matter, e.g.
which test is done first.

𝑃 𝑥, 𝑦, 𝑧 ≔ 𝑓(𝑔 𝑥, 𝑦 , 𝑃′(ℎ 𝑧), 𝑃′(𝑃′(𝑥))) 𝑥)

Linear Recursion Scheme

• Restriction with polynomial equivalence check

uninterpreted functions
e.g. +, <, if-then-else,
return, …

interpreted procedures

linear: nesting forbidden

Simplifications for this Talk

• Just one uninterpreted function/operator s ⋅ 𝑡
• Simple terms 𝑠, 𝑡 ∷= 𝑥 | 𝑎 | 𝑠 ⋅ 𝑡
• Terms 𝑆, 𝑇 ∷= 𝑠 | 𝑃(𝑠)
• Only procedures of the form

 𝑃 𝑥 ≔ 𝑃′ 𝑠 ⋅ 𝑡
 𝑃 𝑥 ≔ 𝑠 ⋅ 𝑃′ 𝑡
 𝑃 𝑥 ≔ 𝑃′ 𝑠 ⋅ 𝑃′′ 𝑡

• Thus
– All procedures produce infinite trees
– Only binary trees where all inner nodes are labelled with ⋅

and leaves are labelled with variables or constants
– Every subtree is described by a term 𝑃(𝑠) or 𝑠

⋮ ⋮

Equality of Infinite Trees

• Binary infinite trees equal ⇔ All subtrees at same position
and with infinite parent-subtrees are both infinite or equal

Equality of Infinite Trees

• Binary infinite trees equal ⇔ All subtrees at same position
and with infinite parent-subtrees are both infinite or equal

• To check equivalence of 𝑆0 and 𝑇0, we generate all such pairs
of subtrees with the inductively defined relation Unf(𝑆0, 𝑇0):

– 𝑆0, 𝑇0 ∈ Unf(𝑆0, 𝑇0)

– If 𝑃 𝑠 , 𝑄 𝑡 ∈ Unf(𝑆0, 𝑇0)

 with 𝑃 𝑥 ≔ 𝑆1 ⋅ 𝑆2 and Q 𝑥 ≔ 𝑇1 ⋅ 𝑇2,

 then 𝑆1[𝑠/𝑥], 𝑇1[𝑡/𝑥] ∈ Unf(𝑆0, 𝑇0)
 and 𝑆2[𝑠/𝑥], 𝑇2[𝑡/𝑥] ∈ Unf(𝑆0, 𝑇0)

• Unf(𝑆0, 𝑇0) is consistent if for all (𝑆, 𝑇) ∈ Unf(𝑆0, 𝑇0), both 𝑆
and 𝑇 are procedure calls or 𝑆 = 𝑇.

• 𝑆0 ≡ 𝑇0 iff Unf(𝑆0, 𝑇0) is consistent.

𝑆0

⋮ ⋮

𝑇0

⋮ ⋮
⋮ ⋮ ⋮ ⋮

𝑃(𝑠)

𝑆1[𝑠/𝑥] 𝑆2[𝑠/𝑥]

𝑄(𝑡)
⋮ ⋮

𝑇1[𝑡/𝑥] 𝑇2[𝑡/𝑥]

Substitutions

• A substitution 𝜎 is a function from variables to
simple terms.

• 𝜎S is the term 𝑆 where every occurrence of a
variable 𝑥 is replaced by 𝜎𝑥.

• The instantiation pre-order ≤ on terms:
𝑆 ≤ 𝑇 ∶⇔ ∃𝜎. 𝑆 = 𝜎𝑇

And on pairs of terms:
𝑆1, 𝑆2 ≤ 𝑇1, 𝑇2

 A ∶⇔ A
∃𝜎. (𝑆1 = 𝜎𝑇1 ∧ 𝑆2 = 𝜎𝑇2)

Finite Equivalence Proofs

• If there is a consistent superset of Unf(𝑆0, 𝑇0), then 𝑆0 ≡ 𝑇0.
• We want to construct a finite representation of such a set to serve

as an equivalence proof.
• Consider a finite, consistent relation 𝑅 such that

– 𝑆0, 𝑇0 ≤ 𝑆, 𝑇 for some 𝑆, 𝑇 ∈ 𝑅

– If 𝑃 𝑠 , 𝑄 𝑡 ∈ 𝑅
 with 𝑃 𝑥 ≔ 𝑆1 ⋅ 𝑆2 and Q 𝑥 ≔ 𝑇1 ⋅ 𝑇2,
 then for 𝑖 ∈ {1,2},
 𝑆𝑖[𝑠/𝑥] = 𝑇𝑖[𝑡/𝑥] is a simple term
 or 𝑆𝑖[𝑠/𝑥], 𝑇𝑖[𝑡/𝑥] ≤ 𝑆, 𝑇 for some 𝑆, 𝑇 ∈ 𝑅

Lemma:
𝑆, 𝑇 𝑆, 𝑇 ≤ 𝑆′, 𝑇′ with 𝑆′, 𝑇′ ∈ 𝑅} ∪ { 𝑠, 𝑠 | 𝑠 is a simple term}

⊇ Unf(𝑆0, 𝑇0)

• The constraint on 𝑅 is decidable. Thus we have a method to prove

equivalence.

• 𝑆0, 𝑇0 ∈ Unf(𝑆0, 𝑇0)

• If 𝑃 𝑠 , 𝑄 𝑡 ∈ Unf(𝑆0, 𝑇0)

with 𝑃 𝑥 ≔ 𝑆1 ⋅ 𝑆2 and Q 𝑥 ≔ 𝑇1 ⋅ 𝑇2,

then 𝑆1[𝑠/𝑥], 𝑇1[𝑡/𝑥] ∈ Unf(𝑆0, 𝑇0)

and 𝑆2[𝑠/𝑥], 𝑇2[𝑡/𝑥] ∈ Unf(𝑆0, 𝑇0)

Unification

• 𝜎 is unifier of 𝑆 and 𝑇 if 𝜎𝑆 ≡ 𝜎𝑇

• We write 𝜎𝑅 for 𝜎𝑆, 𝜎𝑇 𝑆, 𝑇 ∈ R}

Lemma: Unf 𝜎𝑆, 𝜎𝑇 = 𝜎Unf 𝑆, 𝑇

• Thus, Unf 𝜎𝑆, 𝜎𝑇 is consistent iff 𝜎Unf 𝑆, 𝑇 is
consistent iff
– for all simple pairs 𝑠, 𝑡 ∈ Unf 𝑆, 𝑇 , 𝜎𝑠 = 𝜎𝑡

– all other pairs consist of procedure calls only

• This is a classical first-order unification problem

• Thus we have most general unifiers (MGUs) 𝜎:

 For every other unifier 𝜏, we have 𝜏 = 𝜏 ∘ 𝜎

• 𝑆0, 𝑇0 ∈ Unf(𝑆0, 𝑇0)

• If 𝑃 𝑠 , 𝑄 𝑡 ∈ Unf(𝑆0, 𝑇0)

with 𝑃 𝑥 ≔ 𝑆1 ⋅ 𝑆2 and Q 𝑥 ≔ 𝑇1 ⋅ 𝑇2,

then 𝑆1[𝑠/𝑥], 𝑇1[𝑡/𝑥] ∈ Unf(𝑆0, 𝑇0)

and 𝑆2[𝑠/𝑥], 𝑇2[𝑡/𝑥] ∈ Unf(𝑆0, 𝑇0)

Universal Finite Equivalence Proofs

• Consider an MGU 𝜎 of 𝑃 𝑥 and 𝑄 𝑦 .

Then 𝑃 𝑠 ≡ 𝑄 𝑡 iff 𝑃 𝑠 , 𝑄 𝑡 ≤ MGA 𝑃, 𝑄

where MGA 𝑃, 𝑄 ≔ (𝜎𝑃 𝑥 , 𝜎𝑄(𝑦))

• Then R ≔ MGA 𝑃, 𝑄 𝑃 and 𝑄 are unifiable
is a finite equivalence proof for all equivalent
terms 𝑃(𝑠) and 𝑄(𝑡).

• Thus equivalence of terms is semi-decidable.

• 𝑆0, 𝑇0 ≤ 𝑆, 𝑇 for some 𝑆, 𝑇 ∈ 𝑅

• If 𝑃 𝑠 , 𝑄 𝑡 ∈ 𝑅

with 𝑃 𝑥 ≔ 𝑆1 ⋅ 𝑆2 and Q 𝑥 ≔ 𝑇1 ⋅ 𝑇2,
then for 𝑖 ∈ {1,2},
𝑆𝑖[𝑠/𝑥] = 𝑇𝑖[𝑡/𝑥] is a simple term
or 𝑆𝑖[𝑠/𝑥], 𝑇𝑖[𝑡/𝑥] ≤ 𝑆, 𝑇 for some
𝑆, 𝑇 ∈ 𝑅

Decidability of Equivalence

• Equivalence of terms is semi-decidable.

• Non-equivalence is semi-decidable too: the
trees must differ at some finite level.

• Thus equivalence is decidable.

• In the next talks, I will present an efficient
procedure to decide equivalence by reducing
the problem to a fragment of semi-unification.

Literature

Fokkink, W. Unification for infinite sets of
 equations between finite terms.
 Information processing letters 62, 4 (1997),
 183–188.

Sabelfeld, V. The tree equivalence of linear
 recursion schemes.
 Theoretical Computer Science 238, 1–2
 (2000), 1–29.

